

Inhalt

- Bestandsanalyse, Instandsetzungsziele
- Bauabschnitt 1: Ersatz Fahrbahnplatte
- Bauabschnitt 2: Ertüchtigung der Längsträger
- Fazit

27.04.2015

Nachrechnung des Bauwerks

Ursprungslastmodell 1951:

französische Belastungsnorm

Nachrechnungsergebnis:

BK 60/30, LM 1 \rightarrow große Defizite BK 60 \rightarrow Defizite

BK 30/30 (Ziellastniveau) → Defizite (Rückverankerung 11%, Feldkabel 19%)

BK 30 → geringe Defizite

→ Einrichtung einer 12 t-Lastbeschränkung vor Baubeginn

27.04.2015

Durchgeführte Bauwerksuntersuchungen

- Untersuchungen der Betonplatte
 stark schwankende Druckfestigkeiten
 - bereichsweise Kerne nicht unzerstört zu entnehmen
- Untersuchungen Baustahl
 - S 235, nur bedingt schweißbar
- Untersuchung der 1989 vollummantelten Tragkabel
 - Öffnen der Tragkabelummantelung an versch. Punkten (4 Verankerungen, Tiefpunkte, Hochpunkte, Hänger)

27.04.2015

Saarbrücke Mettlach - Anwendung der SPS-Bauweise

Untersuchung der Tragkabel

Kabelzustand insgesamt sehr gut, im Bereich der Verankerung teilweise stark korrodiert mit geringem Querschnittsverlust

Entfernung der 1989 aufgebrachten Korrosionsschutzmasse (Zinkchromathaltiges Polymer)

Schaden an einem Verankerungspunkt

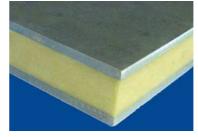
27.04.2015

Ergebnis der durchgeführten Berechnungen und Untersuchungen

- Instandsetzung der denkmalgeschützten Brücke ist sinnvoll möglich
- Komplettabbruch und Erneuerung der vorhandenen Fahrbahnplatte (wenn möglich mit Eigengewichtsreduzierung)
- Instandsetzung/Erneuerung beider Gehwege
- Erneuerung des Korrosionsschutzes des Brückendecks
- Abwicklung der Baumaßnahmen unter halbseitiger Bauweise mit Ampelregelung

27.04.2015

Saarbrücke Mettlach - Anwendung der SPS-Bauweise


Instandsetzungsplanung

SPS: Sandwich-Plate-System

- Polyurethan Elastomer der Firma BASF
- Hoher E-Modul (750 N/mm²) und hohe Schubverbundfestigkeit zu Stahl

Anwendungen im Brückenbau:

- Pilotprojekte in Deutschland als Overlay (D-Brücken, Krefeld, Berlin)
- Fahrbahnplattenerneuerungen in Kanada (zuletzt Dawson Bridge 2010)

Keine normativ geregelte Bauart, daher ZiE erforderlich

Patentinhaberin in Deutschland: Intelligent Engineering Limited, London, UK Ausführung der patentierten Bauweise in Deutschland: Firma Eiffel Deutschland Stahltechnologie GmbH

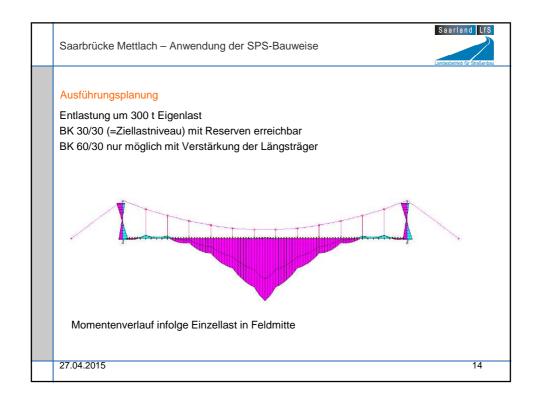
Weiterführende Literatur: Bericht der Forschungsvereinigung Stahlanwendung (FOSTA) P628, 2010 und Stahlbau 76 (2007), Sonderheft SPS

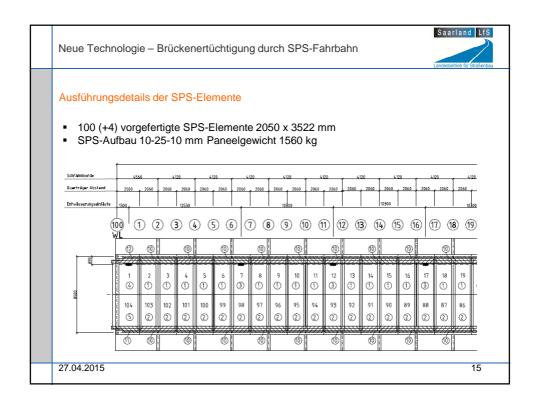
27.04.2015 10

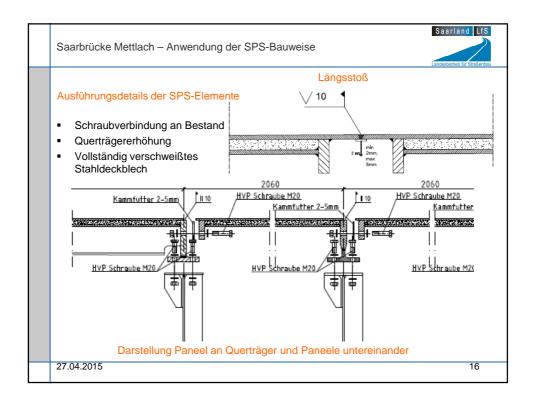
Bewertungsmatrix der untersuchten Varianten

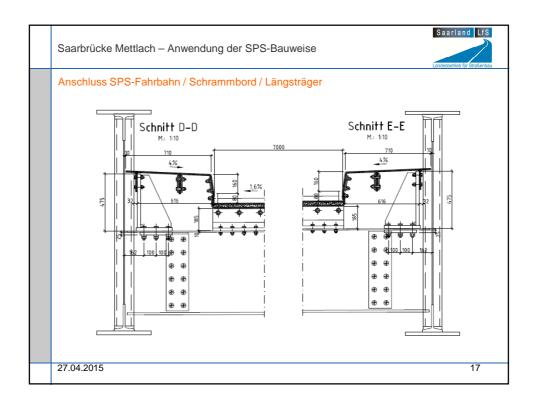
	Variante A Betonfahrbahn	Variante B Hochleistungsbeton	Variante C Orthotrope Stahlfahrbahn	Variante D Sandwich- Plattensystem
astbeschränkung	ja	nein	nein	nein
Sewichtsreduktion	nein	ca. 150 to	ca. 220 to	ca. 300 to
Sonderlösung	nein	ja (ZiE)	ja (ZiE)	ja (ZiE)
/ollsperrung erforderlich	teilweise	ja	nein	nein
Konstruktionshöhe	0	+	-	+
Bauzeit	-	-	0	+
Baukosten	+	0	0	0
Schwingungsverhalten/Dämpfung	+	0	-	+
Blitzeisgefahr	+	+	-	+
Geräuschemission	+	0	-	+

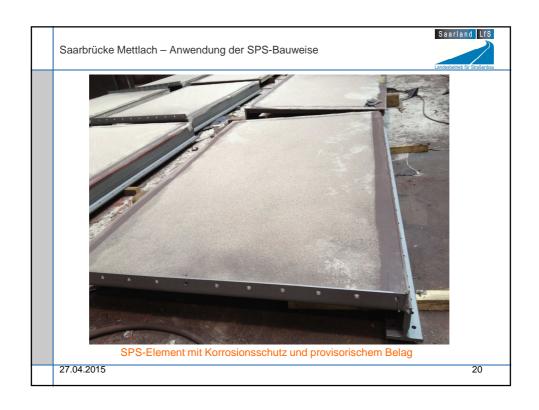
Saarbrücke Mettlach – Anwendung der SPS-Bauweise

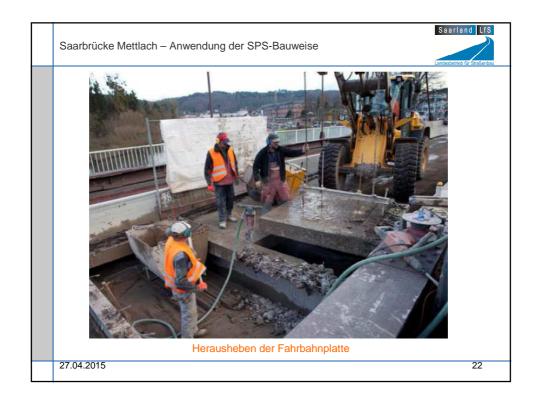



Bauabschnitte


- Umfang und Randbedingungen der erforderlichen Instandsetzungsarbeiten erfordern 2 Bauabschnitte
- 1. Bauabschnitt: Erneuerung Fahrbahnplatte (November 2012 März 2013)
 - Freihändige Vergabe des patentierten Systems
- <u>2. Bauabschnitt: Gehwegerneuerung und Korrosionsschutz</u> (Juni 2013 Ende 2014)
 - Öffentliche Ausschreibung möglich und erforderlich
 - Durchführung bei geeigneter Witterung


27.04.2015





Projektkosten 1. BA

1. Planung 470.000 € (davon 210.000 € EDS)

2. Voruntersuchungen 420.000 € (davon 390.000 € Untersuchung Tragkabel)

3. Verkehrssicherung 280.000 €
 4. Bau (Ersatz Platte) 2.800.000 €
 5. Überwachung 50.000 €

∑ 4.020.000 € (≈ 3.020 € / m² zw. Geländern)

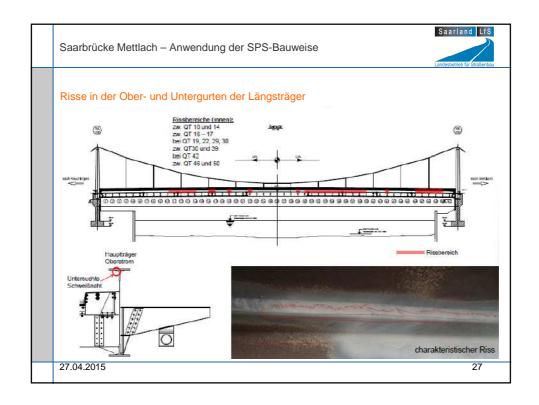
(Angaben brutto)

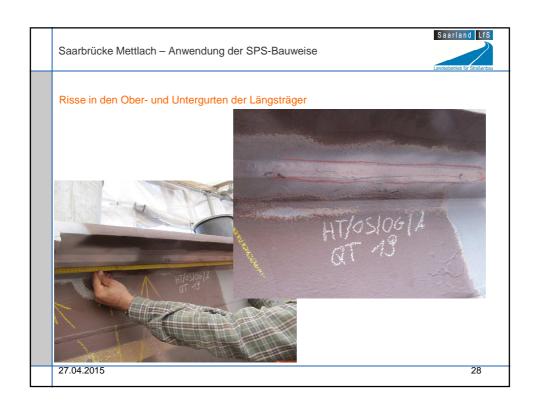
Kosten SPS-Lieferung in Mettlach 1190 €/m² netto und Einbau 300 €/m² netto

Bei größeren Flächen Lieferung SPS 750 – 1250 €/m² netto

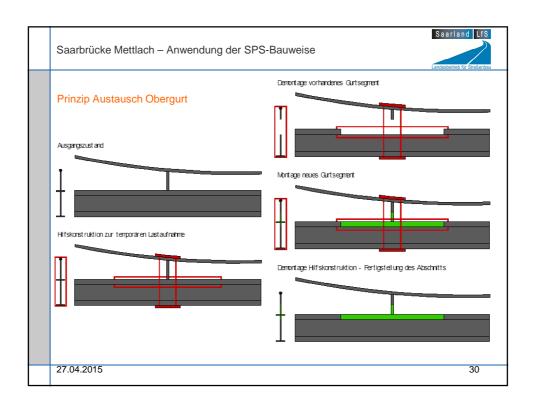
27.04.2015 25

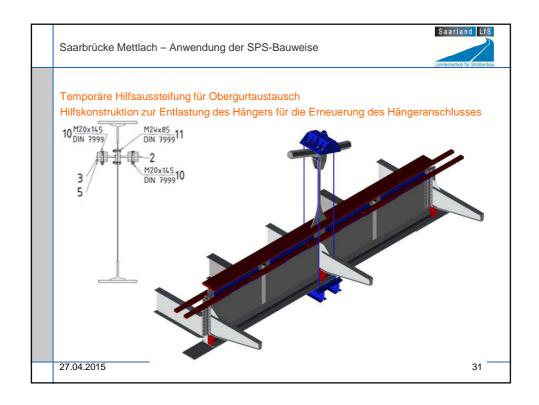
Saarbrücke Mettlach - Anwendung der SPS-Bauweise

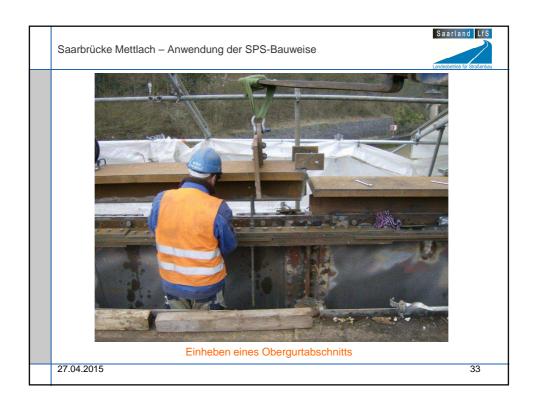


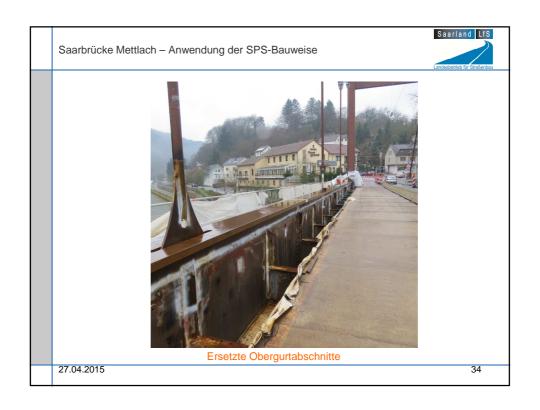

2. Bauabschnitt

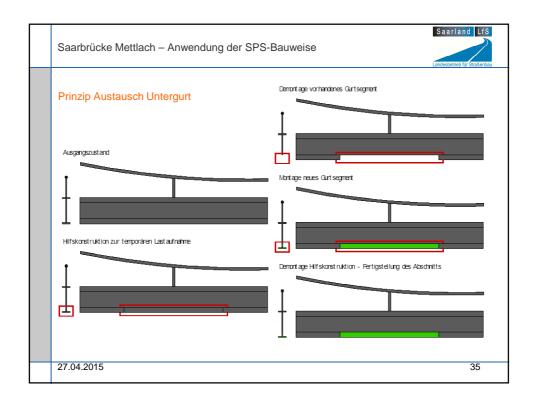
- Erneuerung der beiden Gehwegkonstruktionen (Gehweg Unterstrom wird 1m verbreitert)
- Korrosionsschutz an der Tragkonstruktion
- Herstellen des endgültigen Fahrbahnbelages

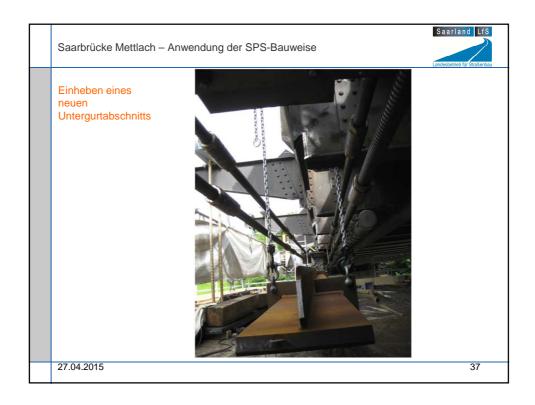



27.04.2015











Fazit

- Einsatzmöglichkeiten SPS im Brückenbau:
 - Ersatz von Betonfahrbahnplatten, insb. bei Verbundbrücken mit Querträgern
 - Verstärkung von orthotropen Platten
- Altstahlproblematik:
 - herstellungsbedingte
 Fehlstellen
 (Kohlenstoffeinschüsse) in
 Stahlblechen der 50er und 60er
 Jahre, mögliche
 Weiterentwicklung unter
 statischer oder thermischer
 Belastung

27.04.2015 39

Saarbrücke Mettlach – Anwendung der SPS-Bauweise

Weiterführende Literatur

- Stahlbau 03/2013: Neue Technologie für die Hängebrücke über die Saar in Mettlach – Brückenfahrbahn aus Sandwich Plate System (SPS)
- Stahlbau 05/2014: Verstärkung und Instandsetzung der Hängebrücke über die Saar in Mettlach

 Auszeichnung beim Ingenieurbaupreis 2014 des Verlags Ernst und Sohn

Vielen Dank für Ihre Aufmerksamkeit!

rnst & Sohr

27.04.2015 40